US009483292B2

az United States Patent (10) Patent No.: US 9,483,292 B2
Turgeman et al. 45) Date of Patent: Nov. 1, 2016

(54) METHOD, DEVICE, AND SYSTEM OF (58) Field of Classification Search
DIFFERENTIATING BETWEEN VIRTUAL CPC GOGF 9/45533; GOG6F 11/3055; GOG6F
MACHINE AND NON-VIRTUALIZED 11/301; GO6F 2221/2133; GOGF 21/31;
DEVICE GOGF 21/32; GOGF 21/554; GOGF 21/316;
GOGF 3/041; HO4L 63/08; HOAL 63/1408
(71) Applicant: BioCatch Ltd., Tel Aviv (IL) USPC e 726/7

See application file for complete search history.
(72) Inventors: Avi Turgeman, Cambridge, MA (US); .
Yaron Lehmann, Tel Aviv (IL) (56) References Cited

(73) Assignee: BioCatch Ltd., Tel Aviv (IL) U.S. PATENT DOCUMENTS

. . . . R 3,618,019 A * 11/1971 Nemirovsky G07C 9/0015
(*) Notice: Subject to any disclaimer, the term of this Y 178/20.01
patent is extended or adjusted under 35 4,128,829 A * 12/1978 Herbst GO6K 9/00154
U.S.C. 154(b) by 0 days. 382/120
(Continued)

(21) Appl. No.: 14/675,763

(22) Filed: Apr. 1, 2015 OTHER PUBLICATIONS

Ahmed et al.,, “A New Biometric Technology Based on Mouse

(65) Prior Publication Data Dynamics”, Jul.-Sep. 2007, IEEE Transaction on Dependable and
US 2015/0212843 A1 Jul. 30, 2015 Secure Computing, vol. 4, No. 3, pp. 165-179.*
(Continued)
Related U.S. Application Data Primary Examiner — Nabil El Hady

(63) Continuation-in-part of application No. 14/566,723, (74) Attorney, Agent, or Firm — Eitan, Mehulal & Sadot

filed on Dec. 11, 2014, now Pat. No. 9,071,969, which

is a continuation of application No. 13/922,271, filed 7 ABSTRACT

on Jun. 20, 2013, now Pat. No. 8,938,787, which is a Devices, systems, and methods of detecting user identity,
differentiating between users of a computerized service, and

(Continued) detecting a cyber-attacker. An end-user device (a desktop

computer, a laptop computer, a smartphone, a tablet, or the

(1) Int. Cl. like) interacts and communicates with a server of a com-
HO4L 29/08 (2006.01) puterized server (a banking website, an electronic commerce
GO6F 9455 (2006.01) website, or the like). The interactions are monitored, tracked
(Continued) and logged. Communication interferences are intentionally

(52) US.CL introduced to the communication session; and the server
CPC ... GO6F 9/45533 (2013.01); GOG6F 3/041 tracks the response or the reaction of the end-user device to

(2013.01); GOGF 11/301 (2013.01); GO6F such communication interferences. The system determines

11/3055 (2013.01); GO6F 21/31 (2013.01); whether the user is a legitimate human user; or a cyber-
GO6F 21/316, (2013.01); GO6F 2 1/32’ attacker posing as a legitimate human user but actually
(2013.01); utilizing a Virtual Machine.

(Continued) 21 Claims, 6 Drawing Sheets

| Communication Interference Generator |

301

302/| Packet Duplicator
Error Code Inserter

| Response-to-Communication-Interference Analyzer |

N A A
N 07
VM Existence
Estimation Module
305 Dropper
Latency / Delay Slow Transport
Generator Generator
306
Network Congestion
304 Generator
Sub-System

300

US 9,483,292 B2
Page 2

Related U.S. Application Data

continuation-in-part of application No. 13/877,676,
filed as application No. PCT/IL2011/000907 on Nov.
29, 2011, now Pat. No. 9,069,942, application No.
14/675,763, which is a continuation-in-part of appli-
cation No. 14/320,653, filed on Jul. 1, 2014, and a
continuation-in-part of application No. 14/320,656,
filed on Jul. 1, 2014, and a continuation-in-part of
application No. 14/325,393, filed on Jul. 8, 2014, and
a continuation-in-part of application No. 14/325,394,
filed on Jul. 8, 2014, and a continuation-in-part of
application No. 14/325,395, filed on Jul. 8, 2014, and
a continuation-in-part of application No. 14/325,396,
filed on Jul. 8, 2014, and a continuation-in-part of
application No. 14/325,397, filed on Jul. 8, 2014, and
a continuation-in-part of application No. 14/325,398,
filed on Jul. 8, 2014.

(60) Provisional application No. 61/973,855, filed on Apr.
2,2014, provisional application No. 61/417,479, filed
on Nov. 29, 2010, provisional application No. 61/843,
915, filed on Jul. 9, 2013.

(51) Imt.CL
GO6F 11/30 (2006.01)
GO6F 3/041 (2006.01)
GO6F 21/31 (2013.01)
GO6F 21/32 (2013.01)
GO6F 21/55 (2013.01)
HO4L 29/06 (2006.01)
(52) US. CL
CPCcccue. GOG6F 21/554 (2013.01); HO4L 63/08
(2013.01); HO4L 63/1408 (2013.01); GO6F
2221/2133 (2013.01)
(56) References Cited

U.S. PATENT DOCUMENTS

5,557,686 A * 9/1996 Brown ... GO07C 9/00142
340/5.51

6,938,061 B1* 82005 Rumynin ... GOG6F 7/5318
708/210

6,938,159 B1* 82005 O’Connor GO6F 21/32
713/186

6,957,185 B1* 10/2005 Labaton G06Q 20/10
380/279

6,957,186 B1* 10/2005 Guheen G06Q 90/20
705/323

6,983,061 B2* 1/2006 Ikegami GO6F 21/32
382/115

7,130,452 B2* 10/2006 Bolle GO6F 21/6245
235/379

7,133,792 B2* 11/2006 Murakami GO6K 9/00536
702/104

7,139916 B2* 11/2006 Billingsley GO6F 21/36
380/255

7,245,218 B2* 7/2007 Ikehara ... GO6F 3/03543
340/5.53

7,494,061 B2* 2/2009 Reinhold HO4L 63/0861
235/375

8,417,960 B2* 4/2013 Takahashi HO4L 9/0866
340/5.82

8,510,113 B1* 82013 Conkie G10L 13/00
704/258

9,304915 B2* 4/2016 Adams GO6F 12/1063
2001/0004733 Al* 6/2001 Eldering G06Q 20/20
705/14.41

2003/0033526 Al* 2/2003 French GO6F 21/31
713/168

2003/0074201 Al* 4/2003 Grashey GI0L 17/22
704/273

2004/0015714 Al1* 1/2004 Abraham GO6F 17/30867
726/4

2004/0111523 Al* 6/2004 Hall ... HO4L 29/06
709/230

2005/0008148 Al* 1/2005 Jacobson GOG6F 3/038
380/26

2005/0289264 Al* 12/2005 Illowsky GOG6F 13/00
710/104

2006/0143454 Al* 6/2006 Walmsley GOG6F 21/85
713/170

2006/0195328 Al* 82006 Abraham ... GO06Q 20/204
235/382

2006/0224898 Al* 10/2006 Ahmed GO6F 21/36
713/186

2007/0266305 Al* 11/2007 Congcccecevnn. G06Q 30/02
715/700

2007/0283416 Al* 12/2007 Renaud ... GO6F 21/31
726/2

2009/0089879 Al* 4/2009 Wang ... GO6F 21/53
726/24

2009/0254336 Al* 10/2009 Dumais GOGF 9/4443
704/9

2010/0042403 Al* 2/2010 Chandrasekar G06Q 30/02
704/9

2010/0046806 Al* 2/2010 Baughman GOG6F 21/316
382/115

2010/0328074 Al* 12/2010 Johnson GO6F 21/31
340/573.1

20110102570 A1* 5/2011 Wilf ... GO6F 3/017
348/77

2011/0113388 Al* 5/2011 Eisencoevevne. GO6F 21/32
715/856

2011/0251823 Al1* 10/2011 Davisc.ccoevne G06Q 30/02
702/181

2011/0271342 A1* 11/2011 Chung ... GOG6F 21/554
726/23

2012/0005483 Al* 1/2012 Patvarczki GO6F 21/36
713/182

2012/0154173 Al* 6/2012 Changccccoeuei. GO1S 7/032
340/904

2012/0218193 Al* 82012 Weber GOG6F 1/1626
345/173

2012/0278804 Al* 11/2012 Narayanasamy ... GO6F 9/45558
718/1

2013/0036416 Al* 2/2013 Raju GO6F 9/45558
718/1

2014/0078193 Al* 3/2014 Barnhoefer GO09G 3/3406
345/690

2014/0082369 Al* 3/2014 Waclawsky GO6F 21/62
713/189

2015/0012920 Al* 12015 De Santis GO6F 9/45533
718/1

OTHER PUBLICATIONS

Zheng et al., “An Efficient User Verification System via Mouse
Movements”, Oct. 17-21, CCS’ 11, Chicago, Illinois.™*

Nakkabi et al., “improving Mouse Dynamics Biometric Perfor-
mance Using Variance Reduction via Extractor with Separate Fea-
tures”, Nov. 2010, IEEE Transactions on System, Man, and
Cybermetrics—Part A: Systems and Humans, vol. 40, No. 6.*
Yampolskiy et al., “Behavioural Biometrics: a survey and classifi-
cation”, 2008, International Journal of Biometrics, vol. 1, No. 1, pp.
81-113.*

Frantzeskou et al., “Identifying Authorship by Byte-Level
N-Grams: The source Code Author Profile (SCAP) Method”, Spring
2007, International Journal of Digital Evidence, vol. 6, Issue 1, pp.
1-18.*

Spafford et al., “Software Forensics: Can We Track Code to its
Authors?”, Feb. 1992, Computer Science Technical Report, Purdue
e-Pubs, Report No. CSD-TR-92-010.*

Bailey, Kyle O., “Computer Based Behavioral Biometric Authen-
tication Via Multi-Modal Fusion”, Thesis, 2013, Air Force Insitute
of Technology.*

US 9,483,292 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

T. Garfinkel and M. Rosenblum, “A virtual Machine Introspection-
Based Architecture for Intrusion Detection.”, 2003, Proc. Network
and Distributed Systems Security Symp., The Internet Society, pp.
191-206.*

Franklin et al., Remote Detection of Virtual Machine Monitors with
Fuzzy benchmarking, ACM SIGOPS Operating Systems Review,
V42, Issue 3, Apr. 2008.*

Ferrie Peter, Attack on Virtual Machine Emulators, Symantec
Technology Exchange, 2007.*

Liston et al., On the Cutting Edge: Thwarting Virtual Machine
Detection, 2006.*

Nance et al.,, Virtual Machine Introspection, IEEE Security &
Privacy, 2008.*

Cleef et al., Security Implications of Virtualization: A Literature
Study, Science and Engineering, 2009.*

Ormandy, Tavis, An Empirical Study into the Security Exposure to
Hosts of Hostile Virtualized Environments, 2007.*

* cited by examiner

U.S. Patent

Nov. 1, 2016

Sheet 1 of 6 US 9,483,292 B2

: /| End-User Device 183 :
: 181 4 :
| | | User-Interactions Tracker :
A ~ A :
E 3 E
E Y E
I ~| Server I
| 182 v 184 ;
! User-Interactions Analyzer :
| 185D !
: . y 1857 185C | |
| Interference _ / .
' Selector / Binary-Value oo !
' | Generator Feature 9 :
! Extractor Process |
! Modifier !
! Click-Fraud Features Uniqueness !
! Prevention Analyzer !
| 18587 E
| \ \ v /188 ¢ .
! Fraud Estimator !
i v / 189 E

Fraud Mitigation Module

U.S. Patent Nov. 1, 2016 Sheet 2 of 6 US 9,483,292 B2

Input Unit Output Unit
19 N 118
\ \'4 102
User Interactions Sampling / Monitoring |/
101
116 v \'4 yd

User-Specific
Feature Extraction

103\ .

104\ v Database/1 17
Comparator / Matching

Current Profile

i\

N .
P User Profiles

105\ v
User Identity Determination
/111
AN FDM
Fraud Mitigation /
System
1007

Fig. 1B

U.S. Patent Nov. 1, 2016 Sheet 3 of 6 US 9,483,292 B2

E Computerized Service Platform _255A E
FDM
' 212 \
! e

! 211 213 :
; AN AN Application i
! Web Server Database Server !
I 7 A A ;N Y, . :
| 2558 !
! 210 v/ 255C \'4 v/ I
FDM FDM FDM|
! i '\ :
201\ , P 202
: End-User Device End-User Device !
! (Legitimate) (Attacker) E
: 241 :
| 0.S 242 |
i 243 VMM :
: 231\ VM 244 |
E 232 OS. 245 OS |
! Application Application :
E Browser Browser E
: ™\ 233 246 E
L System :

LSYstem
200 Fig. 2

U.S. Patent Nov. 1, 2016 Sheet 4 of 6 US 9,483,292 B2

Communication Interference Generator
301/
302/ Packet Duplicator
7| Error Code Inserter
303 321
3 3 /
Response-to-Communication-Interference Analyzer
Vi A A A
322\ ¥ /307
VM Existence Packet
Estimation Module
30< Dropper
Latency / Delay Slow Transport
Generator Generator
306"
| Network Congestion
304
Generator
Sub-System

3007 Fig. 3

U.S. Patent Nov. 1, 2016 Sheet 5 of 6 US 9,483,292 B2

Abnormal Network Conditions Generator
N\
425
Stack-Based VM Estimator
AN
) : 419
TCP Window Size Measurer
>17
7
418 TTL Measurer
A \
Stack Profile Generator
N\ 428
v /427
Stack Profiles
Repository
v 430\
Stack Profile Stack-Components
Comparator Comparator
N\ 429
431\ Weighting Modul
Sub-System N Weighting Module
4007

Fig. 4

U.S. Patent Nov. 1, 2016 Sheet 6 of 6 US 9,483,292 B2

/ .
517 Direct Access Tester

Additional Packet Handler Estimator

N\
510

Layer-of-Handler Estimator

N\
515

NAT / Bridged Estimator
N514

Communication Interference Generator

/533 N\501

Resource-Overloading Module

Resource Performance Estimator
534

Processing Core(s) Estimator

\535

Sub-System

07 Fig. 5

US 9,483,292 B2

1

METHOD, DEVICE, AND SYSTEM OF
DIFFERENTIATING BETWEEN VIRTUAL
MACHINE AND NON-VIRTUALIZED
DEVICE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority and benefit from U.S.
provisional patent application No. 61/973,855, titled
“Method, Device, and System of Detecting Identity of a
User of an Electronic Service”, filed on Apr. 2, 2014, which
is hereby incorporated by reference in its entirety.

This application is a Continuation-in-Part (CIP) of, and
claims priority and benefit from, U.S. patent application Ser.
No. 14/566,723, filed on Dec. 11, 2014; which is a Con-
tinuation of U.S. patent application Ser. No. 13/922,271,
filed on Jun. 20, 2013, now U.S. Pat. No. 8,938,787, which
is a Continuation-in-Part (CIP) of U.S. patent application
Ser. No. 13/877,676, filed on Apr. 4, 2013; which is a
National Stage of PCT International Application number
PCT/IL.2011/000907, having an International Filing Date of
Nov. 29, 2011; which claims priority and benefit from U.S.
provisional patent application No. 61/417,479, filed on Nov.
29, 2010; all of which are hereby incorporated by reference
in their entirety.

This application is a Continuation-in-Part (CIP) of, and
claims priority and benefit from, U.S. patent application Ser.
No. 14/320,653, filed on Jul. 1, 2014; which claims priority
and benefit from U.S. provisional patent application No.
61/843,915, filed on Jul. 9, 2013; all of which are hereby
incorporated by reference in their entirety.

This application is a Continuation-in-Part (CIP) of, and
claims priority and benefit from, U.S. patent application Ser.
No. 14/320,656, filed on Jul. 1, 2014; which claims priority
and benefit from U.S. provisional patent application No.
61/843,915, filed on Jul. 9, 2013; all of which are hereby
incorporated by reference in their entirety.

This application is a Continuation-in-Part (CIP) of, and
claims priority and benefit from, U.S. patent application Ser.
No. 14/325,393, filed on Jul. 8, 2014; which claims priority
and benefit from U.S. provisional patent application No.
61/843,915, filed on Jul. 9, 2013; all of which are hereby
incorporated by reference in their entirety.

This application is a Continuation-in-Part (CIP) of, and
claims priority and benefit from, U.S. patent application Ser.
No. 14/325,394, filed on Jul. 8, 2014; which claims priority
and benefit from U.S. provisional patent application No.
61/843,915, filed on Jul. 9, 2013; all of which are hereby
incorporated by reference in their entirety.

This application is a Continuation-in-Part (CIP) of, and
claims priority and benefit from, U.S. patent application Ser.
No. 14/325,395, filed on Jul. 8, 2014; which claims priority
and benefit from U.S. provisional patent application No.
61/843,915, filed on Jul. 9, 2013; all of which are hereby
incorporated by reference in their entirety.

This application is a Continuation-in-Part (CIP) of, and
claims priority and benefit from, U.S. patent application Ser.
No. 14/325,396, filed on Jul. 8, 2014; which claims priority
and benefit from U.S. provisional patent application No.
61/843,915, filed on Jul. 9, 2013; all of which are hereby
incorporated by reference in their entirety.

This application is a Continuation-in-Part (CIP) of, and
claims priority and benefit from, U.S. patent application Ser.
No. 14/325,397, filed on Jul. 8, 2014; which claims priority
and benefit from U.S. provisional patent application No.

10

20

30

40

45

55

2
61/843,915, filed on Jul. 9, 2013; all of which are hereby
incorporated by reference in their entirety.

This application is a Continuation-in-Part (CIP) of, and
claims priority and benefit from, U.S. patent application Ser.
No. 14/325,398, filed on Jul. 8, 2014; which claims priority
and benefit from U.S. provisional patent application No.
61/843,915, filed on Jul. 9, 2013; all of which are hereby
incorporated by reference in their entirety.

FIELD

The present invention is related to the security of elec-
tronic devices and systems.

BACKGROUND

Millions of people utilize mobile and non-mobile elec-
tronic devices, such as smartphones, tablets, laptop comput-
ers and desktop computers, in order to perform various
activities. Such activities may include, for example, brows-
ing the Internet, sending and receiving electronic mail
(email) messages, taking photographs and videos, engaging
in a video conference or a chat session, playing games, or the
like.

Some activities may be privileged, or may require authen-
tication of the user in order to ensure that only an authorized
user engages in the activity. For example, a user may be
required to enter a username and a password in order to
access an email account, or in order to access an online
banking interface or website.

SUMMARY

The present invention may include, for example, systems,
devices, and methods for detecting identity of a user of an
electronic device; for determining whether or not an elec-
tronic device is being used by a fraudulent user or by a
legitimate user; and/or for differentiating among users of a
computerized service or among users of an electronic
device.

Some embodiments of the present invention may com-
prise devices, systems, and methods of detecting user iden-
tity, differentiating between users of a computerized service,
and detecting a possible attacker.

For example, the present invention may differentiate
between: (i) a genuine user or legitimate user or authorized
user, who directly utilizes a real-world computing device in
order to access a service or a remote server; and (ii) an
attacker or hacker or “fraudster” or unauthorized user who
accesses the service or the remote server by utilizing a
Virtual Machine (VM) which runs on top of (or within) a
VM host or a VM monitor (VMM).

The present invention may provide other and/or additional
benefits or advantages.

BRIEF DESCRIPTION OF THE DRAWINGS

For simplicity and clarity of illustration, elements shown
in the figures have not necessarily been drawn to scale. For
example, the dimensions of some of the elements may be
exaggerated relative to other elements for clarity of presen-
tation. Furthermore, reference numerals may be repeated
among the figures to indicate corresponding or analogous
elements or components. The figures are listed below.

FIG. 1A is a schematic block-diagram illustration of a
system, in accordance with some demonstrative embodi-
ments of the present invention;

US 9,483,292 B2

3

FIG. 1B is a schematic block-diagram illustration of
another system, in accordance with some demonstrative
embodiments of the present invention;

FIG. 2 is a schematic block-diagram illustration of
another system, in accordance with some demonstrative
embodiments of the present invention;

FIG. 3 is a schematic block-diagram illustration of a fraud
detection sub-system, in accordance with some demonstra-
tive embodiments of the present invention;

FIG. 4 is a schematic block-diagram illustration of
another fraud detection sub-system, in accordance with
some demonstrative embodiments of the present invention;

FIG. 5 is a schematic block-diagram illustration of still
another fraud detection sub-system, in accordance with
some demonstrative embodiments of the present invention.

DETAILED DESCRIPTION OF THE PRESENT
INVENTION

In the following detailed description, numerous specific
details are set forth in order to provide a thorough under-
standing of some embodiments. However, it will be under-
stood by persons of ordinary skill in the art that some
embodiments may be practiced without these specific
details. In other instances, well-known methods, procedures,
components, units and/or circuits have not been described in
detail so as not to obscure the discussion.

Applicants have realized that some hackers and fraudulent
users may utilize a Virtual Machine (VM) running on top of
a hypervisor or VM Monitor (VMM), in order to perform or
to facilitate fraudulent activity. The VM, or multiple VMs,
may be used by a hacker or attacker for attacking, or
carrying out malicious activities on, a remote system or
remote computer. Each VM may have a unique or different
“fingerprint”, and/or may mimic or imitate to some extent
one or more characteristics of a the victim’s computerized
environment (e.g., Operating System type and/or version,
browser, utilization of a stolen “cookie” file or “cookie”
data-item, or the like); thereby allowing the hacker or
attacker to avoid being detected or captured by security
applications that are device-oriented or that are based on
identification of Device-ID, by security applications which
track devices or computers that had been known in the past
to engage in hacking activities or attacks against the current
system or other systems.

Applicants have further realized that a hacker may per-
form “cloning” or duplication of a computer (or computing
environment) of a legitimate user, in order to imitate the
legitimate user or in order to pretend being the legitimate
user, thereby avoiding the requirement to perform an authen-
tication process (e.g., after the legitimate user performs
authentication towards the service provider, such as a bank-
ing website or electronic commerce website; and such that
the cloned environment may already contain a cloned or
copied authentication key or “cookie” that indicates to the
server that the client is logged-in or authenticated). Addi-
tionally, a hacker may utilize VM technology in order to
create, define and/or utilize a large number of VMs running
on relatively small computers or servers, thereby obviating
the need for the hacker to acquire and operate numerous
physical devices by utilizing virtualization instead.

The present invention may detect activity performed by a
VM, for example, based on identifying different feedback or
reaction from a mouse or keyboard or other input unit;
and/or by identifying differences between the VM and the
computer on top of which the VM is running (“the hosting
environment”).

5

10

15

20

25

30

35

40

45

50

55

60

65

4

For demonstrative purposes, some portions of the discus-
sion herein may relate to differentiation between: (A) a
legitimate or authorized human user, and (B) an unauthor-
ized user, or attacker, or cyber-attacker, who utilizes a VM
in order to access a computerized service and/or while
posing as if he is the legitimate authorized user. However,
the present invention, and the modules and operations
describe herein, may also be used, similarly, in order to
differentiate between: (i) a human user that interacts with a
computerized service directly, without a VM, without a
VMM, without a virtualized environment, by using a non-
virtualized platform; and (ii) another human user, who may
be a cyber-attacker but may not necessarily be a cyber-
attacker, who utilizes a VM and/or VMM and/or virtualized
environment to access the computerized service, without
necessarily cyber-attacking the computerized service (e.g.,
may be a human user that attempts to access the computer-
ized service via a VM for testing purposes, or for grabbing
data or copying data, or for learning or probing the features
or the elements of the computerized service).

Reference is made to FIG. 1A, which is a schematic
block-diagram illustration of a system 180 in accordance
with some demonstrative embodiments of the present inven-
tion. System 180 may comprise, for example: an end-user
device 181 able to communicate (directly or indirectly) with
a server 182 of a computerized service. The interactions
between end-user device 181 and server 182 may be moni-
tored by an interactions monitoring module 183, may be
stored in an interactions log 184, and may be analyzed by an
interactions analyzer 185. The interactions analyzer 185
may be associated with, or may comprise, a legitimate
user/VM differentiator 186, which may optionally comprise
one or more of sub-systems 200, 300, 400 and/or 500 that
are described herein; and/or may implement one or more
other differentiating operations or methods that are
described herein. The output of the legitimate user/VM
differentiator 186 may be transferred to an optional fraud
estimator 188, which may estimate an aggregated threat-
level or fraud-score associated with the particular user or
session or account; and which may accordingly trigger a
fraud mitigation module 189 to perform one or more fraud
mitigation operations.

System 180 may be implemented by using suitable hard-
ware components and/or software modules, which may be
co-located or may be distributed over multiple locations or
multiple devices. Components and/or modules of system
180 may interact or communicate over one or more wireless
communication links, wired communication links, cellular
communication, client/server architecture, peer-to-peer
architecture, or the like.

Reference is made to FIG. 1B, which is a schematic
block-diagram illustration of a system 100 in accordance
with some demonstrative embodiments of the present inven-
tion. System 100 may comprise, for example, an input unit
119, an output unit 118, a user interactions sampling/moni-
toring module 102, a user-specific feature extraction module
101, a database 103 to store user profiles 117, an ad-hoc or
current user profile 116, a comparator/matching module 104,
a user identity determination module 105, a Fraud Detection
Module (FDM) 111, and a fraud mitigation module 106.

System 100 may monitor interactions of a user with a
computerized service, for example, user interactions per-
formed via an input unit 119 (e.g., mouse, keyboard, stylus,
touch-screen) and an output unit 118 (e.g., monitor, screen,
touch-screen) that the user utilizes for such interactions at
the user’s computing device (e.g., smartphone, tablet, laptop
computer, desktop computer, or other electronic device). For

US 9,483,292 B2

5

example, a user interactions monitoring/sampling module
102 may monitor all user interactions via the input unit 119
and/or the output unit 118; and may record, log, track,
capture, or otherwise sample such user interactions; and/or
may otherwise collect user interaction data.

In a demonstrative implementation, for example, an end-
user may utilize a computing device or an electronic device
in order to launch a Web browser and browse to a website
or web-based application of a computerized service (e.g., a
banking website, a brokerage website, an online merchant,
an electronic commerce website). The web-server of the
computerized service may serve code, for example HTML
code, that the Web browser of the end-user device may parse
and may display and/or execute. In accordance with the
present invention, for example, a JavaScript code or code-
portion may be served to the Web-browser of the end-user
device; or may otherwise be “called from” or loaded from an
HTML page that is served to the end-user device. The
JavaScript code may operate as a “silent key-logger” mod-
ule, and may monitor and track and log all the user inter-
actions via keyboard, mouse, touch-screen, and/or other
input units, as well as their timing; and may write or upload
or send such information to the web-server or to a third-party
server in which the user interactions monitoring/sampling
module 102 may reside. In some embodiments, such “silent
key-logger” may be implemented such that it logs or records
or stores or uploads to the server, or analyzes, only anony-
mous data, or only data that excludes the actual content of
user interactions, or only data that on its own does not enable
identification of the user or of the content that the user types;
e.g., by logging or storing only the data-entry rate or timing,
or the key-presses rate or timing, and while not storing (or
while discarding) the actual key-presses or content types; for
example, logging and storing that the user typed eight
characters in two seconds, rather than logging and typing
that the user types the word “Jonathan” in two seconds. The
data describing the user interactions may be sent or
uploaded, for example, every pre-defined time interval (e.g.,
every second, or every 3 or 5 or 10 seconds), or once a buffer
of interactions is filled (e.g., once 20 keystrokes are logged;
once 6 mouse-clicks are logged). Other suitable methods
may be used to monitor and log user interactions.

The user interaction data may enable a user-specific
feature extraction module 101 to extract or estimate or
determine or calculate user-specific features that character-
ize the interaction and which are unique to the user (or,
which are probably unique to the user). The user-specific
feature extraction module 101 may store in a database 103
multiple user profiles 117, corresponding to various users of
the computerized service. A user may have a single stored
profile 117; or a user may have multiple stored profiles 117
that correspond to multiple usage sessions of that user (e.g.,
across multiple days; or across multiple usage sessions that
begin with a log-in and end with a log-out or a time-out).

Once a user accesses (or attempts to access) the comput-
erized service, and/or during the access of the user to the
computerized service, the user interaction monitoring/sam-
pling module 102 may monitor or sample the current user
interactions; and the user-specific feature extraction module
101 may optionally create a current or ad-hoc user profile
116 that characterizes the user-specific features that are
currently exhibited in the current session of user interac-
tions.

A comparator/matching module 104 may compare or
match, between: (i) values of user-specific features that are
extracted in a current user session (or user interaction), and
(i) values of respective previously-captured or previously-

10

15

20

25

30

35

40

45

50

55

60

65

6

extracted user-specific features (of the current user, and/or of
other users, and/or of pre-defined sets of values that corre-
spond to known automated scripts or “bots”). In some
implementations, the comparator/matching module 104 may
compare between the current ad-hoc user profile 116, and
one or more previously-stored user profiles 117 that are
stored in the database 103.

If the comparator/matching module 104 determines that
one or more features, or a set of features, that characterize
the current interaction session of the current user, does not
match those features as extracted in previous interaction
session(s) of that user, then, a possible-fraud signal may be
generated and may be sent or transmitted to other modules
of the system 100 and/or to particular recipients.

Additionally or alternatively, the comparator/matching
module 104 may compare the features characterizing the
current session of the current user, to features characterizing
known automatic fraudulent mechanisms, known as mal-
ware or “bot” mechanisms, or other pre-defined data, in
order to determine that, possibly or certainly, the current user
is actually a non-genuine user and/or is accessing the service
via a fraudulent mechanism.

In some embodiments, the comparator/matching module
104 may comprise, or may operate in association with, a
Fraud Detection Module (FDM) 111, which may comprise
(or may be implemented as) one or more sub-modules, as
described herein.

In some embodiments, the output of the comparator/
matching module 104 may be taken into account in combi-
nation with other information that the fraud detection mod-
ule 111 may determine to be relevant or pertinent, for
example, security information, user information, meta-data,
session data, risk factors, or other indicators (e.g., the IP
address of the user; whether or not the user is attempting to
perform a high-risk activity such as a wire transfer; whether
or not the user is attempting to perform a new type of activity
that this user did not perform in the past at all, or did not
perform in the past 1 or 3 or 6 or 12 months or other
time-period; or the like).

The combined factors and data may be taken into account
by a user identity determination module 105, which may
determine whether or not the current user is a fraudster or is
possibly a fraudster. The user identity determination module
105 may trigger or activate a fraud mitigation module 106
able to perform one or more fraud mitigating steps based on
that determination; for example, by requiring the current
user to respond to a challenge, to answer security
question(s), to contact customer service by phone, to per-
form a two-step authentication or two-factor authentication,
or the like.

System 100 and/or system 180 may be implemented by
using suitable hardware components and/or software mod-
ules, which may be co-located or may be distributed over
multiple locations or multiple devices. Components and/or
modules of system 100 and/or system 180 may interact or
communicate over one or more wireless communication
links, wired communication links, cellular communication,
client/server architecture, peer-to-peer architecture, or the
like

Reference is made to FIG. 2, which is a schematic
block-diagram illustration of a system 200 in accordance
with some demonstrative embodiments of the present inven-
tion. System 200 may comprise a computerized service
platform 210 able to communicate (e.g., via wireless com-
munication links, via wired communication links, over the
Internet, over TCP/IP or other protocols, over cellular net-
work, or the like) with one or more end-user devices, for

US 9,483,292 B2

7

example, end-user device 201 (e.g., operated by a legitimate
user or authorized user) and end-user device 202 (e.g.,
operated by an attacker or hacker or fraudulent user). In
accordance with the present invention, a Fraud Detection
Module (FDM), or multiple FDMs, may be utilized in order
to detect fraud or possible fraud, and/or in order to differ-
entiate between (a) end-user device 201 operated by a
legitimate user, and (b) end-user device 202 operated by an
attacker.

Computerized service platform 210 may comprise, for
example, a Web server 211, an application server 212, and
a database 213 which may provide a service to remote
user(s) that operate remote device(s). Such service may be,
for example, banking service, brokerage service, financial
service, electronic commerce or e-commerce service, infor-
mation service, entertainment service, or the like.

End-user device 201 may be operated by a legitimate user.
End-user device 201 may utilize an Operating System (OS)
231, which may enable the user to utilize one or more
installed software applications, for example, an application
232, a web browser 233, or the like. The OS 231 interacts
with hardware components of end-user device 201, either
directly or via OS driver(s), in a non-virtualized way.

In contrast, end-user device 202 may be operated by an
attacker. For example, end-user device 202 may comprise a
first OS 241 (e.g., Linux), on which a Virtual Machine
Monitor (VMM) 242 or Virtual Machine (VM) Hosting
Environment may be installed and may run. The VMM 242
may create and may control a Virtual Machine (VM) 243, for
example, having a second OS 244 (e.g., Windows) and
having one or more applications (e.g., an application 245, a
web browser 246, or the like). The applications that run
within the VM 243 do not interact directly with the hardware
of end-user device 241; rather, the VMM 242 handles such
interactions on their behalf.

One or more components of system 200 may comprise an
FDM module. For example, in some implementations, com-
puterized service platform 210 may comprise therein an
FDM 255A; or may be associate with (or coupled to) an
external FDM 255D. Additionally or alternatively, FDM(s)
may monitor communications between end-user devices and
the computerized service platform 210; for example, FDM
255C may monitor communications between end-user
device 201 and computerized service platform 210; and
similarly, FDM 255D may monitor communications
between end-user device 202 and computerized service
platform 210. In some implementations, the FDM may be
implemented as part of end-user device, or as part of the OS
or application or web-browser that runs on the end-user
device. Each one of the FDM(s) 255A-255D (or other FDM
which may be located elsewhere in system 200) may per-
form fraud detection, and/or may differentiate between
legitimate user of end-user device 201 and fraudulent user of
end-user device 202; and/or may differentiate between end-
user device 201 which operates in a non-virtualized envi-
ronment, and end-user device 202 which operates utilizing
a VM or in a virtualized environment.

Reference is made to FIG. 3, which is a schematic
block-diagram illustration of a fraud detection sub-system
300 in accordance with some demonstrative embodiments of
the present invention. Sub-system 300 may operate to detect
activity or fraudulent activity that is performed by an
attacker via a Virtual Machine (VM), or by a set or batch or
group of VMs. Sub-system 300 may be implemented as part
of, or as a sub-module of, the FDM(s) of FIG. 2, the system
200 of FIG. 2, the fraud detection module 111 of FIG. 1B,
the system 100 of FIG. 1B, the system 180 of FIG. 1A, the

10

15

20

25

30

35

40

45

50

55

60

65

8

legitimate user/VM differentiator 186 of FIG. 1A, and/or
other suitable systems or modules.

Fraud-detection sub-system 300 may comprise, for
example: a communication interference generator 301; a
packet duplicator 302; an error code inserter 303; a network
congestion generator 304; a slow transport generator 305; a
latency/delay generator 306; a packet dropper 307; a
response-to-communication-interference analyzer 321; and
a VM existence estimation module 322.

Fraud detection sub-system 300 may comprise one or
more security applications or electronic services which may
inject or may introduce, for example, small interferences in
the communication between the service and the user’s
device. For example, a communication interference genera-
tor 301 may generate and/or inject and/or introduce small
interferences in the communication between the service and
the user’s device. In some embodiments, a packet duplicator
module 302 may intentionally perform duplication of sent
packet(s), or may cause the sending of multiple identical
packets, as a communication interference. In some embodi-
ments, an error code inserter module 303 may cause inten-
tional insertion of error codes into a communication session
or communication message that is transmitted to (or
responded to) a user device. A network congestion generator
304 may create one or more network conditions that mimic
or reflect network congestion, at pre-defined time intervals,
or at pseudo-random time intervals. Similarly, a slow trans-
port generation module 305 may cause the online service to
slow-down the transport of data to the user, mimicking a
slow network condition, at pre-defined times or time-inter-
vals, or at pseudo-random times or time-intervals. A latency/
delay generator 306 may artificially inject latency or
delay(s) into particular communications, or at pre-defined
times or time-intervals, or at pseudo-random times or time-
intervals. A packet dropper module 307 may intentionally
drop a packet (or a set of consecutive packets, or a group of
non-consecutive packets), or may mimic or imitate the
accidental dropping or loss of such packet(s), from an
ongoing communication session between a server and the
user’s computer.

Fraud detection sub-system 300 may additionally com-
prise a response to communication interference analyzer 321
and a VM existence estimation module 322. Response-to-
communication-interference analyzer 321 may operate to
track and monitor the response of the end-user device to the
generated communication interference or abnormality and to
analyze the response and its characteristics in order to
determine whether or not the end-user device is a VM based
on the fact that VM(s) respond in a different manner to such
communication interferences, compared to the response of a
human user that directly utilizes a physical computing
device. For example, one or more of such injected commu-
nication interferences may force the hosting environment
(which hosts a VM 1in it, or on it) to expose its existence,
thereby indicating that a VM is running on top of the hosting
environment. Other suitable modules may identify, for
example, that the activity received from the user originates
from a VM, rather than from a human user, as described
herein.

Applicants have realized that in a usage session that
involves virtualization, there is a greater amount or greater
number of components that are involved in communication:
the physical Network Interface Card (NIC) (or modem, or
wireless modem, or other suitable adaptor or interface
adapter); a driver supplied by the manufacturer of the
physical NIC; a driver or application of the hypervisor (for
example, “esx” from VMware); a virtual driver that the

US 9,483,292 B2

9

hypervisor provides to the VM; a driver of the VM itself
(e.g., as Windows XP). The VM existence estimation mod-
ule 322 may detect that one or more, or all, of these
components are involved in the communication session,
based on, for example, their handling of communication
interferences, error codes, network congestion, slow trans-
port, latency or delays, or the like.

In a demonstrative implementation, the system may mea-
sure the time it takes for the “user”—be it the legitimate
human user, or a cyber-attacker operating a VM posing as
the legitimate human user—to respond to various interfer-
ences or communication errors that may be intentionally
introduced to the communication session; such as, non-
responsiveness of the website or web-page or service that is
being accessed, a response that includes errors or that
appears to be erroneous, an “invalid” or improper response
from the website or web-page or service being accessed, or
the like. Analysis of the reaction (e.g., as detailed herein)
may point to the possibility that the “user” is actually or
more-probably a VM running within or on top a hosting
environment or VMM, rather than a human user interacting
directly with a computing device.

Some implementations may monitor and/or identify the
response from the end-user device (a real-world computer
operated directly by a human user, or a VM hosted on top of
a hosting environment) to such intentionally-introduced
interference; for example, whether re-send or re-submit
operation were performed, whether the communication ses-
sion (or website, or web-page) was abandoned or dropped,
whether one or more parameters or characteristics of the
communication session was changed in response to the
interference (e.g., resizing or maximizing of the window
size), or the like.

In some implementations, for example, the system may
intentionally drop or disregard an incoming packet, and may
inspect whether or not the packet is re-sent, what is the
period of time that elapses until such re-sending, and/or
detect traffic incoming from a bot-net; optionally using such
methods in order to detect an Application Denial-of-Service
(DOS) attack.

Reference is made to FIG. 4, which is a schematic
block-diagram illustration of a fraud detection sub-system
400 in accordance with some demonstrative embodiments of
the present invention. Sub-system 400 may operate to detect
activity or fraudulent activity that is performed by an
attacker via a Virtual Machine (VM), or by a set or batch or
group of VMs. Sub-system 400 may be implemented as part
of, or as a sub-module of, the FDM(s) of FIG. 2, the system
200 of FIG. 2, the fraud detection module 111 of FIG. 1B,
the system 100 of FIG. 1B, the system 180 of FIG. 1A, the
legitimate user/VM differentiator 186 of FIG. 1A, and/or
other suitable systems or modules.

Fraud-detection sub-system 400 may comprise, for
example: a stack-based VM estimator 419; a TTL measurer
418; a TCP window-size measurer 417; an abnormal net-
work conditions generator 425; a stack profile generator
428; a stack profiles repository 427; a stack profile com-
parator 429; a stack-components comparator 430; and a
weighting module 431.

As demonstrated in FIG. 4, some embodiments may
utilize a Stack-based VM estimator 419 to detect and/or
identify differences among VM versus non-VM implemen-
tations; which may take into account that a stack of one
operating system (e.g., Microsoft Windows) is different
from the stack of another operating system (e.g., Linux), and
that stacks of different versions of an OS (such as Windows
XP versus Windows 8) are different from each other. This

25

30

40

45

10

may affect other measurable characteristics, such as, for
example, Time-To-Live (TTL) of packets which may be
measured or tracked by a TTL measurer 418 (e.g., by
inspecting “Expires” header or “Expires” field in packets or
HTTP headers or HTTP packets, or in a “cookie”; or using
other TTL measurement techniques). Accordingly, each
implementation may depend on the OS type, on the version
of the OS or some of its components (e.g., kernel version),
on the patching level of the OS, and on other (e.g., default)
configuration parameters of that OS; for example, the TCP
window size in Linux of a particular version may be X,
whereas the TCP window size in Linux of another version
(or, of Microsoft Windows 7) may be Y, and these param-
eters may be tracked or measured by a TCP window size
measurer 417; thereby assisting the Stack-based VM esti-
mator 419 to detect VM or non-VM users.

In accordance with the present invention, a computing
system may be assembled and configured; for example, to
comprise various configurations and various setups of vari-
ous VMs, having different hypervisors, different OS types
and/or OS versions, different NICs or network cards, or the
like. The system may further comprise an abnormal network
conditions generator 425 able to generate interference or
abnormality or error in particular communication network
conditions or characteristics (e.g., delays, error codes, net-
work congestion). The system may additionally comprise
real-life non-virtualized computing platforms, to be used for
comparison purposes against the various VMs. The abnor-
mal network conditions generator 425 may generate abnor-
mal network conditions or communication interferences
based on a “fuzzy logic” algorithm; and/or based on specific
pre-defined interference scenarios, for example, by using
advanced settings of TCP or irregular settings for establish-
ing TCP connection, introducing packet loss, irregular pack-
ets, invalid packets, erroneous packets, dropped packets,
duplicate packets, or the like.

Optionally, a stack profiles repository 427 may be used to
store multiple profiles or multiple “signatures™ of various
computing stacks (e.g., a set of computing elements that
consists of an operating system, kernel version, drivers,
hardware components that are used, TCP parameters,
browser version, or the like). A stack profile generator 428
may be used to generate profiles or signatures to a variety of
computing platforms, including real-life computing plat-
forms as well as various VMs that are hosted on various
hosting environments or VMMs; and such stack profiles
may be stored in the stack profiles repository 427; each
profile or signature may include a unique arrangement or
aggregation of indicators corresponding to the above-men-
tioned computing elements (e.g., represented as a long string
or bit-stream, indicating operating system, kernel version,
browser version, or the like). Subsequently, when an end-
user device connects or attempts to connect to a service, the
stack profile generator 427 may generate an ad-hoc stack
profile for that end-user device, and a stack profile com-
parator 429 may compare the current ad-hock stack profile
to previously-stored stack profiles in the stack profile reposi-
tory 427. The comparison may yield a match between the
current ad-hoc computing stack profile, and a pre-stored
computing stack profile of a real-world computing platform
that is known to be authentic and non-VM, thereby indicat-
ing that a VM is most probably not involved in the current
communication session. Alternatively, the comparison may
yield a match between the current ad-hoc computing stack
profile, and a pre-stored computing stack profile that is
associated with a VM or with a hosted environment or

US 9,483,292 B2

11

VMM, thereby indicating that a VM is most probably
involved in the current communication session.

The system may check each interference scenario, against
each VM and against each non-virtualized platform; and
may detect differences with regard to functional parameters,
performance time, delays, the content that is actually trans-
ported (payload, metadata, control data), the particular tim-
ing of transport of data items, and other parameters, in order
to detect differences between VM and non-VM users. For
example, a stack-components comparator 430 may compare
the value of each tracked parameter or component, with
pre-stored values of real-world (non-virtualized) compo-
nents and virtualized components; and a weighting module
431 may generate a weighted score indicating whether the
entirety of the computing stack, based on the weighted
aggregation of its discrete components, tends to be closer to
matching a virtualized platform (a VM) or a non-virtualized
platform (a real-world hardware computer). The weights
may be pre-defined or pre-allocated (e.g., using a lookup
table or other weights list), or the weights may be imple-
mented as weight-parameters in a weighted fraud-score (or
risk level, or threat level) formula which may be calculated.

Based on the insights of the comprehensive system, such
communication interference module(s) may be integrated as
part of the actual service or website or web-service or online
service; and may generate the particular interference(s) that
would allow the system to detect that a “user” interacting
with the service is actually a VM and not a direct human user
(namely, a human user that utilizes a non-virtualized plat-
form).

Reference is made to FIG. 5, which is a schematic
block-diagram illustration of a fraud detection sub-system
500 in accordance with some demonstrative embodiments of
the present invention. Sub-system 500 may operate to detect
activity or fraudulent activity that is performed by an
attacker via a Virtual Machine (VM), or by a set or batch or
group of VMs. Sub-system 500 may be implemented as part
of, or as a sub-module of, the FDM(s) of FIG. 2, the system
200 of FIG. 2, the fraud detection module 111 of FIG. 1B,
the system 100 of FIG. 1B, the system 180 of FIG. 1A, the
legitimate user/VM differentiator 186 of FIG. 1A, and/or
other suitable systems or modules.

Fraud-detection sub-system 500 may comprise, for
example: a resource-overloading module 533; a resource
performance estimator 534; a processing core(s) estimator
535; a communication interference generator 501; an addi-
tional packet handler estimator 510; a layer-of-handler esti-
mator 515; a NAT/Bridged estimator 514; and a direct
access tester 517.

As demonstrated in FIG. 5, the present invention may
identify that the user of a service is actually utilizing a VM,
by estimating and/or determining the number of processing
cores and/or CPU cores and/or processing resources that are
associated with the user. Applicants have realized that some
hackers often create VMs that are relatively weak in terms
of processing power or processing resources, and that are
allocated only some and not all of the processing resources
of the hosting environment; and/or that many VMs are
defined or created by using a “default” setting of a single-
core machine (e.g., even if the hosting computer is a
dual-core or multiple-core machine). The system may utilize
a resource-overloading module 533 in order to intentionally
run CPU-intensive or processing-intensive parallel compu-
tations or calculations, and may utilize a resource perfor-
mance estimator 534 to measure or estimate the CPU
strength and/or the processor core count that are associated
with the user-side device; which in turn may be indicative of

25

30

35

40

45

50

55

12

whether or not the end-user device is a (typically-weaker)
virtualized environment (e.g., based on the time or process-
ing-cycles or memory, which are actually used in order to
complete a processing task or other resource-examining
task). Optionally, the number of processing core(s) of the
end-user device may be estimated or determined by a
processing core(s) estimator 535, based on the performance
of the end-user device in response to processing-intensive
tasks that may be generated by the resource-overloading
module 533. In some implementations, an estimate that the
user-side machine has extensive processing resources and/or
utilizes more than one processing core (e.g., may contribute
to (or may base) a determination that the user is not a VM.
In some implementations, an estimate that the user-side
machine has low processing resources and/or utilizes a
single processing core, may contribute to (or may base) a
determination that the user is actually a VM and not a human
user. Other characteristics may be measured or estimated, by
using JavaScript or other methods, and other indicators may
be used for identifying a VM and/or for supporting a
possible decision that the user is actually a VM.

Applicants have realized that some attackers or hackers
may utilize a VM in order to imitate or mimic or emulate
another computer or another computing platform; for
example, in order to create an impression towards a server
computer of a service, as if the attacker’s computer (which
is a VM) is identical to or similar to the real-world computer
(or computing device) of the victim (the real user, whose
identity the attacker is imitating; or whose user account the
attacker is trying to fraudulently access); and/or in order to
create an impression towards a server computer of a service,
as if the attacker’s computer (which is a VM) is different
from the real-world computer that the attacker utilizes.
Accordingly, an attacker that wishes to pose as a victim user,
or that wishes to pose as a different (non-attacker) user, may
utilize a VM that may mimic or imitate characteristic of a
victim computer or of a non-attacker computer. The present
invention may utilize one or more methods or modules, in
order to expose the fact that there is inconsistency, or
incompatibility or mismatch, between (a) the characteristics
of the computer that appears to be accessing the server, and
(b) the characteristics of the computer that is actually
accessing the server as they are inferred or deduced from the
behavior of such computer in response to injected real-time
communication errors or interferences.

The present invention may thus determine, identity and/or
estimate, that there is an additional or alternate “handler”
which handles or manipulates the communication packet;
instead of or in addition to the expected, single “handler” of
communication packets. Based on the responses to one or
more injected communication interferences, an Additional
Packet Handler estimator 510 may estimate or determine the
existence of such additional packet handler, which may be or
may include, for example, the physical NIC or network card
of the computer hardware that hosts (or monitors) the VM
and/or the driver of the hypervisor, or the Operating System
that hosts the VM or the like. For example, the Additional
Packet Handler Estimator 510 may estimate or may deter-
mine that the characteristics of the virtual NIC or the virtual
network card (of the VM), or the virtual OS (of the VM), are
characteristics that are typically associated with a VM and
not with a real-world computing platform that runs directly
on hardware (without a VMM); thereby estimating that
probably a VM is being used to access the service or the
server.

In some implementations, any packet that reaches the
VM, is handled by one additional handler or by two (or

US 9,483,292 B2

13

more) additional handlers, namely, additional component(s)
that are not present in the communication flow when a
real-world computer is utilized (without a VM); and such
packet(s) are handled by particular software modules that
are part of the VM software (e.g., a virtualized network card,
a virtualized driver of a virtualized OS).

Applicants have realized that in some implementations,
the VMM or hypervisor is often defined by utilizing Net-
work Address Translation (NAT), as a network element in
Layer 2, rather than by utilizing bridged networking.
Accordingly, a NAT/Bridged Estimator 514 may estimate
that a client device is utilizing NAT networking, rather than
bridged networking; and may utilize this to determine or
estimate that the client device is actually a VM running on
top of a VMM, rather than a real-world computer that
directly runs on hardware.

In some implementations a Layer of Handler estimator
515 may analyze the communications data and/or meta-data
in order to estimate, at which layer of the communication
session are packets being handled by the user’s device, or at
which layer of the communication session are communica-
tion errors being handled by the user’s device. For example,
a communication interference generator 501 may inject or
generate or introduce communication interferences or abnor-
malities; and the Layer of Handler estimator 515 may
identify or may estimate that lower-layer elements or mod-
ules are handling such interferences or errors, thereby indi-
cating that a VMM is handling such interferences or errors
(and not transferring such errors or interferences to handling
by the VM itself).

Applicants have realized that typically, a VM may not be
capable of directly accessing a graphics card (or other
graphic-processing hardware element) of the host computer
on which the VM is hosted; whereas a non-VM environment
may typically be capable of directly accessing the graphics
card (or other graphic-processing hardware element).
Accordingly, a Direct Access Tester 517 may attempt to
directly access the graphics card of the end-user device, by
utilizing one or more suitable algorithms or functions (e.g.,
by using or invoking WebGLWorker or other suitable func-
tions), and may examine the success or failure of such
attempt for direct access in order to deduce the possible
existence of a VM.

In a demonstrative embodiment, for example, the Direct
Access Tester 217 may utilize WebGLWorker (or other
suitable function) in order to attempt to draw on the screen
(e.g., on the actual screen of the end-user device, or on an
invisible screen or a software-side screen that is not visible
by the user) a pre-defined or randomly-selected visual item
that typically requires direct access to the graphics card (e.g.,
a three-dimensional rotating cube or cuboid or box). If the
attempt is successful, namely, the particular graphic element
is successtully drawn, then the Direct Access Tester 517 may
determine that the end-user device is not a VM (or, is
most-probably not a VM); whereas, if the attempt fails,
namely, the particular graphic element fails to be drawn,
then the Direct Access Tester 517 may determine that the
end-user device is actually a VM running on top of a VMM.

In accordance with some embodiments of the present
invention, a method may comprise: determining whether a
user, who utilizes a computing device to interact with a
computerized service, (A) is a user interacting with a non-
virtualized computing device, or (B) is a Virtual Machine
(VM) running on top of a Virtual Machine Monitor (VMM);
wherein the determining comprises: generating and intro-
ducing an interference into a communication session
between the computerized service and the computing

10

15

20

25

30

35

40

45

50

55

60

65

14

device; monitoring response of the computing device to said
interference; based on the monitored response, determining
whether said user, who utilizes the computing device to
interact with a computerized service, (A) is a user interacting
with a non-virtualized computing device, or (B) is a Virtual
Machine (VM) running on top of a Virtual Machine Monitor
(VMM).

In some embodiments, generating the interference com-
prises duplicating a packet in said communication session
between the computerized service and the computing
device; wherein the determining comprises: based on the
response of the computing device to said interference of a
duplicated packet, determining whether said user, who uti-
lizes the computing device to interact with a computerized
service, (A) is a user interacting with a non-virtualized
computing device, or (B) is a Virtual Machine (VM) running
on top of a Virtual Machine Monitor (VMM).

In some embodiments, generating the interference com-
prises intentionally dropping a packet in said communica-
tion session between the computerized service and the
computing device; wherein the determining comprises:
based on the response of the computing device to said
interference of a dropped packet, determining whether said
user, who utilizes the computing device to interact with a
computerized service, (A) is a user interacting with a non-
virtualized computing device, or (B) is a Virtual Machine
(VM) running on top of a Virtual Machine Monitor (VMM).

In some embodiments, generating the interference com-
prises inserting an error code into said communication
session between the computerized service and the comput-
ing device; wherein the determining comprises: based on the
response of the computing device to said interference of
error code insertion, determining whether said user, who
utilizes the computing device to interact with a computer-
ized service, (A) is a user interacting with a non-virtualized
computing device, or (B) is a Virtual Machine (VM) running
on top of a Virtual Machine Monitor (VMM).

In some embodiments, generating the interference com-
prises generating network congestion in said communication
session between the computerized service and the comput-
ing device; wherein the determining comprises: based on the
response of the computing device to said interference of
network congestion, determining whether said user, who
utilizes the computing device to interact with a computer-
ized service, (A) is a user interacting with a non-virtualized
computing device, or (B) is a Virtual Machine (VM) running
on top of a Virtual Machine Monitor (VMM).

In some embodiments, generating the interference com-
prises slowing-down network transport in said communica-
tion session between the computerized service and the
computing device; wherein the determining comprises:
based on the response of the computing device to said
interference of slowed-down network transport, determining
whether said user, who utilizes the computing device to
interact with a computerized service, (A) is a user interacting
with a non-virtualized computing device, or (B) is a Virtual
Machine (VM) running on top of a Virtual Machine Monitor
(VMM).

In some embodiments, generating the interference com-
prises generating latency in said communication session
between the computerized service and the computing
device; wherein the determining comprises: based on the
response of the computing device to said interference of
latency, determining whether said user, who utilizes the
computing device to interact with a computerized service,
(A) is a user interacting with a non-virtualized computing

US 9,483,292 B2

15
device, or (B) is a Virtual Machine (VM) running on top of
a Virtual Machine Monitor (VMM).

In some embodiments, generating the interference com-
prises generating a communication error that causes a Vir-
tual Machine Monitor (VMM) to handle the communication
error without passing the communication error for handling
by an underlying Virtual Machine (VM); based on the
handling of said communication error, determining that the
computing device is a Virtual Machine (VM) running on a
Virtual Machine Monitor (VMM).

In some embodiments, the method may comprise: gener-
ating a communication error that causes a packet to be
handled by both (i) a virtualized network card of a Virtual
Machine (VM), and (ii) a hardware network card of a
computer on which said Virtual Machine (VM) is running;
detecting dual-handling of said packet due to said commu-
nication error; based on said dual-handling, determining that
said computing device is a Virtual Machine (VM).

In some embodiments, the method may comprise: gener-
ating a communication error that causes a packet to be
handled by both (i) a virtualized driver of a Virtual Machine
(VM), and (ii) a non-virtualized driver of a computer on
which said Virtual Machine (VM) is running; detecting
dual-handling of said packet due to said communication
error; based on said dual-handling, determining that said
computing device is a Virtual Machine (VM).

In some embodiments, the method may comprise: deter-
mining whether said computing device is defined by utiliz-
ing Network Address Translation (NAT) or by utilizing
bridged networking; based on a determination that said
computing device is defined by utilizing Network Address
Translation (NAT), determining that said computing device
is a Virtual Machine (VM).

In some embodiments, the method may comprise: gener-
ating a communication error that is typically handled by an
end-user device at a communication layer that is higher than
data link layer (I.2); monitoring the handling of said com-
munication error by said computing device; detecting that
said communication error was handled at the data link layer
(L2); based on said detecting, determining that said com-
puting device is a Virtual Machine (VM).

In some embodiments, the method may comprise: mea-
suring a time-to-live (TTL) value of packets transported
from said computerized service to said computing device;
based on said TTL value, determining whether said user,
who utilizes the computing device to interact with a com-
puterized service, (A) is a user interacting with a non-
virtualized computing device, or (B) is a Virtual Machine
(VM) running on top of a Virtual Machine Monitor (VMM).

In some embodiments, the method may comprise: mea-
suring a Transmission Control Protocol (TCP) window size
of said computing device; based on said TCP window size
of said computing device, determining whether said user,
who utilizes the computing device to interact with a com-
puterized service, (A) is a user interacting with a non-
virtualized computing device, or (B) is a Virtual Machine
(VM) running on top of a Virtual Machine Monitor (VMM).

In some embodiments, the method may comprise: storing
in a repository profiles of multiple computing stacks of
Virtual Machines (VMs); during the communication session
between said computerized service and said computing
device, generating an ad-hoc computing stack profile of said
computing device; if the ad-hoc computing stack profile of
said computing device matches a previously-stored profile
of computing stack of Virtual Machine (VM), then deter-
mining that said computing device is a Virtual Machine
(VM.

10

15

20

25

30

35

40

45

50

55

60

65

16

In some embodiments, the method may comprise: storing
in a repository profiles of multiple computing stacks of
non-virtualized computing platforms; during the communi-
cation session between said computerized service and said
computing device, generating an ad-hoc computing stack
profile of said computing device; if the ad-hoc computing
stack profile of said computing device matches a previously-
stored profile of a computing stack of non-virtualized com-
puting platform, then determining that said computing
device is a non-virtualized computing platform.

In some embodiments, the method may comprise: esti-
mating two or more parameters of a computing stack of said
computing device; generating a weighted score based on
said two or more parameters of the computing stack of said
computing device; if the weighted score matches a previ-
ously-calculated score that typically characterizes a Virtual
Machine (VM), then determining that said computing device
is a Virtual Machine (VM).

In some embodiments, the method may comprise: causing
said computing device to perform a processing-intensive
process, and monitoring progress of said processing-inten-
sive process; based on monitored progress of said process-
ing-intensive process, estimating whether said computing
device is a single-core computing device or a multiple-core
computing device; if it is estimated that said computing
device is a single-core computing device, then determining
that said computing device is a Virtual Machine (VM).

In some embodiments, the method may comprise: causing
said computing device to perform a resource-overloading
process, and monitoring progress of said resource-overload-
ing process; based on monitored progress of said processing-
intensive process, estimating whether said computing device
is a high-resource computing device or a low-resource
computing device; if it is estimated that said computing
device is a low-resource computing device, then determin-
ing that said computing device is a Virtual Machine (VM).

In some embodiments, the method may comprise: causing
said computing device to invoke a process that attempts to
directly access a graphics card of said computing device;
monitoring whether or not said process successfully
accessed directly the graphics card of said computing
device; if it is detected that said process did not successfully
access directly the graphics card of said computing device,
then determining that said computing device is a Virtual
Machine (VM).

In some embodiments, the method may comprise: causing
said computing device to invoke a process that attempts to
draw a particular on-screen graphic item that can be drawn
only by direct access to a graphics card of said computing
device; monitoring whether or not said process successfully
drew said graphic item; if it is detected that said process did
not successfully draw said graphic item, then determining
that said computing device is a Virtual Machine (VM).

Modules, elements, systems and/or sub-systems described
herein may be implemented by using hardware components
and/or software modules; for example, utilizing a processor,
a controller, an Integrated Circuit (IC), a logic unit, memory
unit, storage unit, input unit, output unit, wireless modem or
transceiver, wired modem or transceiver, internal or external
power source, database or data repository, Operating System
(OS), drivers, software applications, or the like. Some
embodiments may utilize client/server architecture, distrib-
uted architecture, peer-to-peer architecture, and/or other
suitable architectures; as well as one or more wired and/or
wireless communication protocols, links and/or networks.

Although portions of the discussion herein relate, for
demonstrative purposes, to wired links and/or wired com-

US 9,483,292 B2

17

munications, some embodiments of the present invention are
not limited in this regard, and may include one or more
wired or wireless links, may utilize one or more components
of wireless communication, may utilize one or more meth-
ods or protocols of wireless communication, or the like.
Some embodiments may utilize wired communication and/
or wireless communication.

Functions, operations, components and/or features
described herein with reference to one or more embodiments
of the present invention, may be combined with, or may be
utilized in combination with, one or more other functions,
operations, components and/or features described herein
with reference to one or more other embodiments of the
present invention.

While certain features of the present invention have been
illustrated and described herein, many modifications, sub-
stitutions, changes, and equivalents may occur to those
skilled in the art. Accordingly, the claims are intended to
cover all such modifications, substitutions, changes, and
equivalents.

What is claimed is:
1. A method comprising:
determining whether a user, who utilizes a computing
device to interact with a computerized service, (A) is a
user interacting with a non-virtualized computing
device, or (B) is a Virtual Machine (VM) running on
top of a Virtual Machine Monitor (VMM);

wherein the determining comprises:

generating and introducing an interference into a com-
munication session between the computerized service
and the computing device;

monitoring response of the computing device to said

interference;

based on the monitored response, determining whether

said user, who utilizes the computing device to interact
with a computerized service, (A) is a user interacting
with a non-virtualized computing device, or (B) is a
Virtual Machine (VM) running on top of a Virtual
Machine Monitor (VMM).

2. The method of claim 1, wherein generating the inter-
ference comprises duplicating a packet in said communica-
tion session between the computerized service and the
computing device; wherein the determining comprises:

based on the response of the computing device to said

interference of a duplicated packet, determining
whether said user, who utilizes the computing device to
interact with a computerized service, (A) is a user
interacting with a non-virtualized computing device, or
(B) is a Virtual Machine (VM) running on top of a
Virtual Machine Monitor (VMM).

3. The method of claim 1, wherein generating the inter-
ference comprises intentionally dropping a packet in said
communication session between the computerized service
and the computing device; wherein the determining com-
prises:

based on the response of the computing device to said

interference of a dropped packet, determining whether
said user, who utilizes the computing device to interact
with a computerized service, (A) is a user interacting
with a non-virtualized computing device, or (B) is a
Virtual Machine (VM) running on top of a Virtual
Machine Monitor (VMM).

4. The method of claim 1, wherein generating the inter-
ference comprises inserting an error code into said commu-
nication session between the computerized service and the
computing device;

10

20

25

30

35

40

45

50

55

60

65

18

wherein the determining comprises: based on the response
of the computing device to said interference of error
code insertion, determining whether said user, who
utilizes the computing device to interact with a com-
puterized service, (A) is a user interacting with a
non-virtualized computing device, or (B) is a Virtual
Machine (VM) running on top of a Virtual Machine
Monitor (VMM).

5. The method of claim 1, wherein generating the inter-
ference comprises generating network congestion in said
communication session between the computerized service
and the computing device;

wherein the determining comprises: based on the response

of the computing device to said interference of network
congestion, determining whether said user, who utilizes
the computing device to interact with a computerized
service, (A) is a user interacting with a non-virtualized
computing device, or (B) is a Virtual Machine (VM)
running on top of a Virtual Machine Monitor (VMM).

6. The method of claim 1, wherein generating the inter-
ference comprises slowing-down network transport in said
communication session between the computerized service
and the computing device;

wherein the determining comprises: based on the response

of the computing device to said interference of slowed-
down network transport, determining whether said
user, who utilizes the computing device to interact with
a computerized service, (A) is a user interacting with a
non-virtualized computing device, or (B) is a Virtual
Machine (VM) running on top of a Virtual Machine
Monitor (VMM).

7. The method of claim 1, wherein generating the inter-
ference comprises generating latency in said communication
session between the computerized service and the comput-
ing device;

wherein the determining comprises: based on the response

of the computing device to said interference of latency,
determining whether said user, who utilizes the com-
puting device to interact with a computerized service,
(A) is a user interacting with a non-virtualized com-
puting device, or (B) is a Virtual Machine (VM)
running on top of a Virtual Machine Monitor (VMM).
8. The method of claim 1, wherein generating the inter-
ference comprises generating a communication error that
causes a Virtual Machine Monitor (VMM) to handle the
communication error without passing the communication
error for handling by an underlying Virtual Machine (VM);
based on the handling of said communication error,
determining that the computing device is a Virtual
Machine (VM) running on a Virtual Machine Monitor
(VMM).

9. The method of claim 1, comprising:

generating a communication error that causes a packet to
be handled by both (i) a virtualized network card of a
Virtual Machine (VM), and (ii) a hardware network
card of a computer on which said Virtual Machine
(VM) is running;

detecting dual-handling of said packet due to said com-

munication error;
based on said dual-handling, determining that said com-
puting device is a Virtual Machine (VM).

10. The method of claim 1, comprising:

generating a communication error that causes a packet to
be handled by both (i) a virtualized driver of a Virtual
Machine (VM), and (ii) a non-virtualized driver of a
computer on which said Virtual Machine (VM) is
running;

US 9,483,292 B2

19

detecting dual-handling of said packet due to said com-
munication error;

based on said dual-handling, determining that said com-
puting device is a Virtual Machine (VM).

11. The method of claim 1, comprising:

determining whether said computing device is defined by
utilizing Network Address Translation (NAT) or by
utilizing bridged networking;

based on a determination that said computing device is
defined by utilizing Network Address Translation
(NAT), determining that said computing device is a
Virtual Machine (VM).

12. The method of claim 1, comprising:

generating a communication error that is typically
handled by an end-user device at a communication
layer that is higher than data link layer (L.2);

monitoring the handling of said communication error by
said computing device;

detecting that said communication error was handled at
the data link layer (L2);

based on said detecting, determining that said computing
device is a Virtual Machine (VM).

13. The method of claim 1, comprising:

measuring a time-to-live (TTL) value of packets trans-
ported from said computerized service to said comput-
ing device;

based on said TTL value, determining whether said user,
who utilizes the computing device to interact with a
computerized service, (A) is a user interacting with a
non-virtualized computing device, or (B) is a Virtual
Machine (VM) running on top of a Virtual Machine
Monitor (VMM).

14. The method of claim 1, comprising:

measuring a Transmission Control Protocol (TCP) win-
dow size of said computing device;

based on said TCP window size of said computing device,
determining whether said user, who utilizes the com-
puting device to interact with a computerized service,
(A) is a user interacting with a non-virtualized com-
puting device, or (B) is a Virtual Machine (VM)
running on top of a Virtual Machine Monitor (VMM).

15. The method of claim 1, comprising:

storing in a repository profiles of multiple computing
stacks of Virtual Machines (VMs);

during the communication session between said comput-
erized service and said computing device, generating
an ad-hoc computing stack profile of said computing
device;

if the ad-hoc computing stack profile of said computing
device matches a previously-stored profile of comput-
ing stack of Virtual Machine (VM), then determining
that said computing device is a Virtual Machine (VM).

16. The method of claim 1, comprising:

storing in a repository profiles of multiple computing
stacks of non-virtualized computing platforms;

during the communication session between said comput-
erized service and said computing device, generating
an ad-hoc computing stack profile of said computing
device;

5

10

15

20

25

30

35

40

45

50

55

20

if the ad-hoc computing stack profile of said computing
device matches a previously-stored profile of a com-
puting stack of non-virtualized computing platform,
then determining that said computing device is a non-
virtualized computing platform.

17. The method of claim 1, comprising:

estimating two or more parameters of a computing stack
of said computing device;

generating a weighted score based on said two or more
parameters of the computing stack of said computing
device;

if the weighted score matches a previously-calculated
score that typically characterizes a Virtual Machine
(VM), then determining that said computing device is
a Virtual Machine (VM).

18. The method of claim 1, comprising:

causing said computing device to perform a processing-
intensive process, and monitoring progress of said
processing-intensive process;

based on monitored progress of said processing-intensive
process, estimating whether said computing device is a
single-core computing device or a multiple-core com-
puting device;

if it is estimated that said computing device is a single-
core computing device, then determining that said
computing device is a Virtual Machine (VM).

19. The method of claim 1, comprising:

causing said computing device to perform a resource-
overloading process, and monitoring progress of said
resource-overloading process;

based on monitored progress of said processing-intensive
process, estimating whether said computing device is a
high-resource computing device or a low-resource
computing device;

if it is estimated that said computing device is a low-
resource computing device, then determining that said
computing device is a Virtual Machine (VM).

20. The method of claim 1, comprising:

causing said computing device to invoke a process that
attempts to directly access a graphics card of said
computing device;

monitoring whether or not said process successfully
accessed directly the graphics card of said computing
device;

if it is detected that said process did not successfully
access directly the graphics card of said computing
device, then determining that said computing device is
a Virtual Machine (VM).

21. The method of claim 1, comprising:

causing said computing device to invoke a process that
attempts to draw a particular on-screen graphic item
that can be drawn only by direct access to a graphics
card of said computing device;

monitoring whether or not said process successfully drew
said graphic item;

if it is detected that said process did not successfully draw
said graphic item, then determining that said computing
device is a Virtual Machine (VM).

#* #* #* #* #*

